
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Interpolation For FPS (Frame Per Second)

Modification

Mochammad Fariz Rifqi Rizqulloh 135230691,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523069@itb.ac.id, 2faris361707@gmail.com

Abstract—Frame rate, commonly known as frames per

second (FPS), plays a pivotal role in how audiences perceive

videos and animations. Low FPS can result in a choppy,

unnatural experience, while high FPS provides fluidity and a

more immersive viewing. In this paper, we explore FPS

modification through interpolation methods, comparing

linear interpolation, cubic Hermite spline interpolation,

polynomial interpolation, and FFmpeg's minterpolate filter.

Each method brings distinct trade-offs between

computational efficiency and visual quality. The extracted

frames from the original video are interpolated using these

techniques to generate intermediate frames, achieving the

desired FPS. While linear interpolation is computationally

efficient, it struggles with smooth transitions. Cubic Hermite

splines balance efficiency and continuity, whereas polynomial

interpolation offers theoretical accuracy but becomes

impractical due to high computational demands. FFmpeg's

minterpolate provides superior visual quality but is

computationally expensive. This paper offers a

comprehensive comparison of these methods in terms of

speed and output quality, providing insights into their

applicability across various scenarios in video processing. By

addressing computational challenges and visual fidelity, this

research contributes to advancing video frame rate

modification methods.

Keywords—Frame rate modification, interpolation, video

processing, frame synthesis, computational efficiency

I. INTRODUCTION

Frame per second, or FPS, is the rate at which

consecutive images, called frames, appear on a screen. This

simple number can make a video feel smooth and natural

or jagged and uncomfortable. Imagine watching a movie or

playing a game where motion stutters—it pulls you out of

the experience, doesn’t it? That’s what happens with low

FPS. High FPS, on the other hand, creates fluidity,

especially in fast-moving scenes. But there’s a balance to

strike. Too low, and the experience is choppy. Too high,

and you’re pushing hardware limits for little gain.

Adjusting FPS, known as FPS modification, becomes

essential in ensuring a seamless viewing experience across

different platforms and devices. Whether it’s adapting a

cinematic 24 FPS film for a 60 FPS display or breathing

life into old, jerky footage, the goal remains consistent:

smooth transitions that feel natural. In fields like gaming,

sports broadcasting, and video streaming, this adjustment

is more than a technical task—it shapes how audiences

connect with visual content.

This project explores ways to tackle FPS modification.

Specifically, it compares four methods: linear

interpolation, polynomial interpolation, cubic spline

interpolation. Each brings a unique approach while

maintaining usage of same concept, Interpolation. Linear

interpolation is fast and straightforward but can leave

motion looking unnatural. Cubic spline enhances

continuity across frames. These techniques are not just

tools; they offer choices that balance speed, quality, and

computational needs. For FPS modification on

professional fields, like movie production, they use

advanced methods like optical flow, or using other library,

like FFmpeg, or with the help of AI (Artificial Inteligence).

That might provide superior quality but those are

computationally expensive.

Why does this matter? Videos today need to work

seamlessly across devices, whether they’re old movies

restored for modern screens or fast-paced games with

intricate graphics. Choosing the right technique for FPS

modification affects how well the final product works for

its audience. This project evaluates these methods to offer

insights into their effectiveness and trade-offs, providing

guidance for making informed decisions.

In this paper, we’ll first set the stage by looking at

existing work and techniques for FPS modification. Then,

we’ll describe how each of the four methods is

implemented and analyzed. Finally, results will show how

these techniques perform in practice, and we’ll draw

conclusions about their suitability for different types of

content. Every frame matters, and this project digs into

how to make them count.

.

II. FUNDAMENTAL THEOREM

A. Interpolation

Interpolation is a mathematical technique used to

estimate the value of a function at a point within the range

of a discrete set of known data points. Simply put, given a

set of known point : (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … , (𝑥𝑛 , 𝑦𝑛),
interpolation constructs a continuous function 𝑓(𝑥) that

passes through these points.

For example, given these points : (0,2), (1,4), (2,0),

mailto:113523069@itb.ac.id
mailto:2faris361707@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

(3,4). The interpolation result may vary (there may exist

more than 1 equation that satisfy the condition), for

example one of the equation that satisfy the condition is

𝑓(𝑥) = 2 − 5𝑥 + 6𝑥2 − 𝑥3. This equation indeed satisfy

the condition, as 𝑓(0) = 2, 𝑓(1) = 4, 𝑓(2) = 0, 𝑓(3) = 4.

B. Linear Interpolation

Linear interpolation is one of the simplest methods used

to estimate unknown values between two known data

points. Linear interpolation is a method of curve fitting

using linear polynomials to construct new data points

within the range of a discrete set of known data points.

Suppose known data points is (𝑥1, 𝑦1) and (𝑥2, 𝑦2), then

equation is 𝑓(𝑥) = 𝑦1 + (
𝑥−𝑥1

𝑥2−𝑥1
)(𝑦2 − 𝑦1)

Suppose we have coordinate of points :

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛) such that 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛.

Then the result of interpolation is a piece-wise function for

each interval between two consecutive points. This is

example of interpolation using linear interpolation on

points (−1,10), (0,3), (1,0), (2,5), (3,7), (4,7).

Fig 2.1 : Result of linear interpolation

Source : writer’s archive

This algorithm provides very simple and very efficient

approach to interpolating unknown values, as its does not

need any complex processing. However, its come with a

price : the result of linear interpolation may not accurate

for complex data.

C. Cubic Hermite Spline Interpolation

Cubic hermite spline interpolation is a method used to

estimate unknown values between two known points by

fitting a cubic polynomial to the data. Unlike linear

interpolation, which connects data points with straight

lines, cubic hermite spline interpolation uses polynomials

of degree three, allowing for smoother and more accurate

approximations, especially when dealing with nonlinear

data. Suppose known data points is (𝑥0, 𝑓(𝑥0)),
(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)), …, (𝑥𝑛 , 𝑓(𝑥𝑛)), where 𝑥0 < 𝑥1 <
 𝑥2 < ⋯ < 𝑥𝑛. To evaluate data in arbitrary 𝑥, we will use

information from 4 known data points (𝑖, 𝑗, 𝑘, 𝑙), where

𝑥𝑖 ≤ 𝑥𝑗 < 𝑥 < 𝑥𝑘 ≤ 𝑥𝑙 . In other words, point 𝑗 is nearest

point from left, point 𝑖 is next nearest point from right point

𝑘 is nearest point from right, and point 𝑙 is next nearest

point from right. After interpolation, we will be able to

evaluate any points in interval [𝑥𝑗 , 𝑥𝑘]. 𝑖-th point and 𝑙-th

points is take into consideration, because the idea of cubic

hermite spline interpolation is we want to take into

consideration of the slope at 𝑥𝑗 and slope at 𝑥𝑘.

Consider coordinate of points (𝑛 − 1, 𝑓(𝑛 − 1)),
(𝑛, 𝑓(𝑛)), (𝑛 + 1, 𝑓(𝑛 + 1)), (𝑛 + 2, 𝑓(𝑛 + 2)), where 𝑛

is an integer. In addition, assume that the tangents at the

endpoints are defined as the centered differences of the

adjacent points, that its:

𝑚𝑛 =
𝑓(𝑛 − 1) + 𝑓(𝑛 + 1)

2

𝑚𝑛+1 =
𝑓(𝑛) + 𝑓(𝑛 + 2)

2

To evaluate the interpolated 𝑓(𝑥) for a real 𝑥, first

separate x into the integer portion n and fractional

portion u:

𝑥 = 𝑛 + 𝑢

𝑛 = ⌊𝑥⌋
𝑢 = 𝑥 − 𝑛 = 𝑥 − ⌊𝑥⌋

0 ≤ 𝑢 < 1

Then the Catmull-Rom spline is :

In this case, for that interval [𝑛, 𝑛 + 1], the cubic

polynomial formed is 𝑓(𝑥) =

𝑓(𝑛) × 𝑢0 +

(−0.5𝑓(𝑛 − 1) + 0.5𝑓(𝑛 + 1)) × 𝑢1 +

(𝑓(𝑛 − 1) − 2.5𝑓(𝑛) + 2𝑓(𝑛 + 1) − 0.5𝑓(𝑛 + 2)) × 𝑢2 +

(−0.5𝑓(𝑛 − 1) + 1.5𝑓(𝑛) − 1.5𝑓(𝑛 + 1) + 0.5𝑓(𝑛 + 2)) × 𝑢3

Substitute 𝑢 = (𝑥 − 𝑛), we get 𝑓(𝑥) =

𝑓(𝑛) × (𝑥 − 𝑛)0 +

(−0.5𝑓(𝑛 − 1) + 0.5𝑓(𝑛 + 1)) × (𝑥 − 𝑛)1 +

(𝑓(𝑛 − 1) − 2.5𝑓(𝑛) + 2𝑓(𝑛 + 1) − 0.5𝑓(𝑛 + 2)) × (𝑥 − 𝑛)2 +

(−0.5𝑓(𝑛 − 1) + 1.5𝑓(𝑛) − 1.5𝑓(𝑛 + 1) + 0.5𝑓(𝑛 + 2)) × (𝑥 − 𝑛)3

For example, if I have coordinates of points : (−1,10),
(0,3), (1,0), (2,5), (3,7), (4,7). Then the result of the

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

interpolation is :

Fig 2.2 : Result of cubic hermite spline interpolation

Source : writer’s archive

In that example, piece-wise equation formed is

𝑃(𝑥)

=

{

10 − 3.5(𝑥 + 1) − 9.0(𝑥 + 1)2 + 5.5(𝑥 + 1)3, −1 ≤ 𝑥 ≤ 0

 3 − 5𝑥 + 0𝑥2 + 2𝑥3, 0 < 𝑥 ≤ 1

(𝑥 − 1) + 9.5(𝑥 − 1)2 − 5.5(𝑥 − 1)3, 1 < 𝑥 ≤ 2

5 + 3.5(𝑥 − 2) − 2.0(𝑥 − 2)2 + 0.5(𝑥 − 2)3, 2 < 𝑥 ≤ 3

7 + 1.0(𝑥 − 3) − 2.0(𝑥 − 3)2 + 1.0(𝑥 − 3)3, 3 < 𝑥 ≤ 4

D. Cubic Spline Interpolation

Cubic spline interpolation and cubic hermite spline

interpolation has very similar main idea and approach to

interpolation. Both approaches using piece-wise third order

polynomial, both take consideration on polynomial

continuity, and both also take consideration on the

polynomial slope. However, cubic hermite spline

interpolation is done under one assumption the slope of a

points is average of its two adjacent points :

𝑚𝑛 =
𝑓(𝑛 − 1) + 𝑓(𝑛 + 1)

2

That assumption make the calculations and interpolation’s

process much simpler. Meanwhile, the natural cubic spline

interpolation work with no assumption, but it has one more

consederation, the second derivative.

Consider a set of points (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)),

… , (𝑥𝑛 , 𝑓(𝑥𝑛)) , where 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛. Let 𝑃𝑖 is the

piece wise function of 𝑓(𝑥) for interval [𝑥𝑖 , 𝑥𝑖+1]. Then for

all 𝑖 where 0 ≤ 𝑖 < 𝑛 must follow these conditions :

𝑃𝑖(𝑥𝑖) = 𝑓(𝑥𝑖) . . . (1)

𝑃𝑖(𝑥𝑖+1) = 𝑃𝑖+1(𝑥𝑖+1) . . . (2)

𝑃𝑖
′(𝑥𝑖+1) = 𝑃𝑖+1

′ (𝑥𝑖+1) . . . (3)

𝑃𝑖
′′(𝑥𝑖+1) = 𝑃𝑖+1

′′ (𝑥𝑖+1) . . . (4)

Since 𝑃𝑖(𝑥) is a cubic polynomial, then 𝑃𝑖
′′(𝑥) is a linear

polynomial. Let that value of 𝑃𝑖
′′(𝑥𝑖) = 𝜅𝑖. Since 𝑃𝑖

′′(𝑥) is

a linear polynomial, we can easily found the value of

𝑃𝑖
′′(𝑥) where 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1.

𝑃𝑖
′′(𝑥) = 𝜅𝑖

𝑥𝑖+1 − 𝑥

𝑥𝑖+1 − 𝑥𝑖
+ 𝜅𝑖+1

𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

 . . . (5)

Integrating (1), we will get the value of 𝑃𝑖
′(𝑥).

𝑃𝑖
′(𝑥) = −

𝜅𝑖
2

(𝑥𝑖+1 − 𝑥)
2

𝑥𝑖+1 − 𝑥𝑖
+
𝜅𝑖+1
2

(𝑥 − 𝑥𝑖)
2

𝑥𝑖+1 − 𝑥𝑖
+ 𝛼𝑖 … (6)

Integrating (2), we will get value of 𝑃(𝑥).

𝑃𝑖(𝑥) =

 −
𝜅𝑖
6

(𝑥𝑖+1 − 𝑥)
3

𝑥𝑖+1 − 𝑥𝑖
+
𝜅𝑖+1
6

(𝑥 − 𝑥𝑖)
3

𝑥𝑖+1 − 𝑥𝑖
+ 𝛼𝑖𝑥 + 𝛽𝑖 … (7)

We can use this information into our initial condition

(1), (2), (3), and (4). In the end, we will get this equation :

𝜅𝑖(𝑥𝑖+1 − 𝑥𝑖) + 2𝜅𝑖+1(𝑥𝑖+2 − 𝑥𝑖) + 𝜅𝑖+2(𝑥𝑖+2 − 𝑥𝑖+1)

= 6 [
𝑓(𝑥𝑖+2) − 𝑓(𝑥𝑖+1)

𝑥𝑖+2 − 𝑥𝑖+1
−
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖
]

Where 𝑖 = 0, 1, 2, . . , 𝑁 − 2

We finally get 𝑁 − 1 linear equations with 𝑁 +
1 unknowns : 𝜅𝑖, where 0 ≤ 𝑖 ≤ 𝑁. We can use any

system of linear solver, such as Gaussian Elimnation to get

the value of the unknowns. After we find the value of

unknown variables, 𝜅𝑖 where, 0 ≤ 𝑖 ≤ 𝑁 we finally get the

piece-wise function 𝑃𝑖(𝑥), as the coefficient of 𝑃𝑖(𝑥)
dependant only on value of 𝜅𝑖 and 𝜅𝑖+1. However, as the n

number of unknown variables is higher than the number of

equation, the result of linear system of linear equation

might be a parametric variables. Some way to address this

is using some assumptions. Those assumptions including,

but not limited to :

• Make the curvature zero at the endpoints 𝑥0 and 𝑥𝑛.

That is, make 𝜅0 = 𝜅𝑛 = 0. This assumption is

equivalent to assuming that 𝑃0(𝑥) and 𝑃𝑁−1(𝑥)
approach linearity at their outer extremities.

• Make the slope of 𝑓(𝑥) have a specified value at

either of the boundaries.

• Make 𝜅0 = 𝜅1, and 𝜅𝑛−1 = 𝜅𝑛. This assumption is

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

equivalent to assuming that 𝑃0(𝑥) and 𝑃𝑁−1(𝑥)
approach parabola at their outer extremities

Fig 2.3. Comparison between natural cubic and hermite interpolation.

Source : [4]

E. Polynomial Interpolation

Polynomial interpolation is a method used to estimate

values between known data points by fitting a polynomial

that passes through these points. Given a set of data points,

the goal is to find a single polynomial of the lowest

possible degree that exactly matches each point. On of the

key difference between cubic-spline Interpolation, is that

for polynomial interpolation, the result is one continuous

polynomial, whereas cubic-spline interpolation is

continous piece-wise function. In general, given 𝑛 + 1
points, (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑛 , 𝑦𝑛), the

interpolation result will be a polynom with degree of 𝑛.

𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 +⋯+ 𝑐𝑛𝑥
𝑛. The

interpolation result, 𝑓(𝑥), should satisfy these condition :

• 𝑓(𝑥0) = 𝑦0

𝑐0 + 𝑐1𝑥0 + 𝑐2𝑥0
2 + 𝑐3𝑥0

3 +⋯+ 𝑐𝑛𝑥0
𝑛 = 𝑦0

• 𝑓(𝑥1) = 𝑦1

𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥1
2 + 𝑐3𝑥1

3 +⋯+ 𝑐𝑛𝑥1
𝑛 = 𝑦1

• 𝑓(𝑥2) = 𝑦2

𝑐0 + 𝑐1𝑥2 + 𝑐2𝑥2
2 + 𝑐3𝑥2

3 +⋯+ 𝑐𝑛𝑥2
𝑛 = 𝑦2

• …

• 𝑓(𝑥𝑛+1) = 𝑦𝑛+1

𝑐0 + 𝑐1𝑥𝑛+1 + 𝑐2𝑥𝑛+1
2 +⋯+ 𝑐𝑛𝑥𝑛+1

𝑛 = 𝑦𝑛+1

Now, we need to find 𝑐𝑖 , 0 ≤ 𝑖 ≤ 𝑛 that satisfy all of the

equation above. This problem breakdown into this

following : “given 𝑛 + 1 linear equation, find 𝑛 + 1

unknown variables”. As you can see, this quickly become

a trivial system of linear equation problem. There is a lot

of method to solve system of linear equation problem, one

of which is using Gauss Elimination Method. As we solve

all the coefficient, we finally can evaluate value of 𝑓(𝑥) at

any points.

F. System of Linear Equation

A system of linear equations consists of multiple linear

equations involving the same set of variables. For example,

a system with 𝑛 equations and 𝑘 unknowns can be written

in general form as:

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑘𝑥𝑘 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑘𝑥𝑘 = 𝑏2

…

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑘𝑥𝑘 = 𝑏𝑛

This system of linear equations can also be written as

matrix notation:

𝐴𝑥 = 𝑏

Where 𝐴 is the coefficient matrix, 𝑥 is vector of unknowns

variable, and b is vector of constant. Solving a system of

linear equations can be done by various ways, including

Gaussian Elimination, LU Decomposition, Gauss-Jordan

Elimination, Jacobi Method, Gauss-Seidel Method and

others.

III. PROBLEM ANALYSIS

Video is a series of frames, and frames is matrix of RGB

values. In this paper, we let that 𝑃𝑖𝑛𝑖𝑡(𝑖, 𝑥, 𝑦) is value stored

in RGB values of 𝑖-th frames of original video, at position

(𝑥, 𝑦). Similarly, we let that 𝑃𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑥, 𝑦) is value stored

in RGB values of 𝑖-th frames of modified video, at position

(𝑥, 𝑦). To modify the FPS, we need to generate a new set

of pixel values for each frame of the modified video. The

number of frames in the modified video may differ, and we

must compute the values for intermediate frames.

To modify the FPS of a video, we treat each pixel's

position (𝑥, 𝑦) independently. This means that the pixel

values over time at a specific location (𝑥, 𝑦) in all frames

form a series of data points that we can process separately

from other pixel locations. For a given pixel position

(𝑥, 𝑦), the data points are the RGB values of that pixel

across all frames in the original video. Denoting the

original number of frames as 𝑁, the set of points we will

interpolate is :

[

(1, 𝑃𝑖𝑛𝑖𝑡(1, 𝑥, 𝑦)),

(2, 𝑃𝑖𝑛𝑖𝑡(2, 𝑥, 𝑦)),
…

(𝑁, 𝑃𝑖𝑛𝑖𝑡(𝑁, 𝑥, 𝑦))]

.

Using an interpolation method (e.g., linear, cubic hermite

spline, or polynomial), we construct a continuous

function 𝐹𝑥,𝑦(𝑡), where 𝑡 is a real value for any 𝑡 ∈ [1, 𝑁].

Using 𝐹𝑥,𝑦(𝑡), we can construct 𝑃𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑥, 𝑦), for all 1 ≤

𝑖 ≤ 𝑁′, where 𝑁′ is number of frames in modified video.

To get consistent result, we can evalue in this following

way :

• Let 𝛼 =
𝑁−1

𝑁′−1

• 𝑃𝑓𝑖𝑛𝑎𝑙(1, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1)

• 𝑃𝑓𝑖𝑛𝑎𝑙(2, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1 + 𝛼)

• 𝑃𝑓𝑖𝑛𝑎𝑙(3, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1 + 2𝛼)

• …

• 𝑃𝑓𝑖𝑛𝑎𝑙(𝑁′, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1 + (𝑁
′ − 1)𝛼)

Using above method of evaluating make sure the difference

between each frame is consistent, make the possible best

result among all scenario.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig 3.1. Visualization of the process.

Source : writer’s archive

Interpolation is done 𝑊 ×𝐻 times, where one for each

pixel position. After all pixel is interpolated and the value

is evaluated, we can turn all the frame back into video

again. Below is experiment done on video with 4 frames,

changed to video with 7 frames.

Fig 3.2. Result of FPS modification from 4 frame to 7 frame. Both of the

video has the same duration, but different number of frames.

Source : writer’s archive

Polynomial interpolation requires special handling due

to its computational challenges. As explained earlier, we

will treat each pixel position (𝑥, 𝑦), where 1 ≤ 𝑥 ≤ 𝑊 and

1 ≤ 𝑦 ≤ 𝐻 independently. Because of that, for each pixel

position, the number of data points processed for

interpolation will be equal to the number of frames in the

video. As the duration or FPS of the original video

increases, the total number of frames also grows

significantly. This becomes a problem because, in

polynomial interpolation, the degree of the polynomial is

equal to the number of frames minus one. For example, if

we have a 15-second video with an FPS of 24, the degree

of the polynomial would be:

𝑛 = (15 × 24) − 1 = 359

Such a high degree creates serious challenges for

computational speed and memory. The coefficients of the

system of linear equations used to compute the polynomial

grow extremely large, leading to inefficiencies.

To address this issue, I chose to split the video into

smaller chunks, each consisting of 25 frames. This

approach ensures that the interpolation remains accurate

while significantly reducing the computational load and

memory requirements. By limiting the degree of the

polynomial within each chunk, the process becomes

manageable and avoids excessive computation time.

IV. IMPLEMENTATION

In implementing FPS modification, we utilized two

primary libraries: NumPy and OpenCV. OpenCV was used

to handle the video processing tasks, specifically for

extracting frames from the input video. By reading the

video file frame by frame, OpenCV allowed us to

efficiently access the raw pixel data of each frame.

The extracted frames were stored in a Python list, with

each frame represented as a 3D NumPy array of shape
(ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 3), where the three channels correspond

to the RGB values of each pixel. This structure ensured that

the frames were organized sequentially, enabling

straightforward manipulation and interpolation of pixel

values. The list as a whole had a shape of
(𝑓𝑟𝑎𝑚𝑒𝑠, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 3), representing the entire video

as a collection of RGB matrices.

Once the interpolation process was applied, the resulting

interpolated frames were computed and appended to a new

list, representing the modified video. Each interpolated

frame maintained the same dimensions and RGB structure

as the original frames, ensuring consistency. The final list

of frames for the modified video was then saved back as a

new video file using OpenCV, completing the FPS

modification process.

Fig 4.1. Converting video into list of frames

Source : writer’s archive

Fig 4.2. Interpolation process
Source : writer’s archive

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig 4.3. Converting list of frames into video

Source : writer’s archive

V. RESULT ANALYSIS

The speed comparison highlights the computational

efficiency and result quality of different FPS modification

methods for videos of varying resolutions and frame

counts. Aside of the linear interpolation, cubic hermite

spline interpolation, and polynomial interpolation, one

more method is added into the comparison. Industrial grade

FPS modification library, FFmpeg, is used to measure how

efficient is this algorithm. Test is conducted with two kinds

of video, simple video, and complex video. The result is

shown in the following :

Simple video, consist of 48 frames, resolution is

40 × 100. FPS of the video is modified to 5 times fold,

from 12 to 60,. The final video consist of 240 frames:

1. Linear Interpolation : 0.06 seconds

2. Cubic hermite spline interpolation : 0.07 seconds

3. FFmpeg’s minterpolate : 0.5 seconds

4. Polynomial Interpolation : 6s

Complex video, consist of 178 frames, resolution is

720 × 1280. FPS of the video is modified to 2.5 times

fold, from 12 to 30. The final video consist of 445 frames:

1. Linear Interpolation : 22.34 seconds

2. Cubic hermite spline interpolation : 24.11 seconds

3. FFmpeg’s minterpolate : approximately 70 seconds

4. Polynomial Interpolation : More than 300 seconds,

the computation is terminated mid-way due to

excessive computational demands

This comparison show how efficient linear interpolation

and cubic hermite spline interpolation, while at the same

time show how inefficient polynomial interpolation is. As

for FFmpeg, eventough it is significantly slower than two

other interpolation method, FFmpeg’s mininterpolate

provides very high-quality motion smoothing.

For the result comparison, the result of linear

interpolation and cubic hermite spline interpolation far too

similar. So for this comparison, only show comparison

between original video, cubic hermite spline interpolation,

and FFmpeg’s mininterpolate. When comparing the results

of FPS modification using FFmpeg's minterpolate filter

and cubic hermite spline interpolation, both methods

effectively achieved the desired change in FPS, but with

noticeable differences in visual output. The FFmpeg

approach produced a smoother video overall, but some

frames appeared deformed, likely due to motion estimation

inaccuracies during interpolation. On the other hand, the

bicubic hermite spline interpolation method maintained the

structural integrity of all frames, with no visible

deformation. However, the resulting video exhibited minor

changes to the human eye, with a slight shadow or blur

effect, particularly in areas with rapid motion. This

suggests that while FFmpeg prioritizes smooth transitions,

it may compromise frame quality in some cases, whereas

bicubic hermite spline interpolation focuses on

maintaining frame integrity, sometimes at the cost of a

perfectly smooth experience. Below is some of the

comparison. For the full comparison, you may access on

this link : Full Comparison

Fig 5.1. Example of comparison for complex colored video

Source : writer’s archive

Fig 5.2. Example of comparison for simple colored video

Source : writer's archive

As shown in the figure above, the cubic hermite spline

interpolation method works by "squeezing" additional

frames between the original frames. As a result, the

interpolated frames appear as a blend or merge of the

previous and next frames, creating a smooth transition

effect. However, in human eyes, the result of cubic hermite

spline interpolation may appear worse.

VI. CONCLUSION

This research demonstrates how interpolation

techniques can effectively modify a video's FPS, with each

method offering unique benefits and limitations. Linear

interpolation is the fastest approach but lacks smooth

transitions, making it suitable for simple applications.

Cubic Hermite spline interpolation provides a balance

between computational efficiency and quality, producing

smooth transitions without significant deformation in

frames. Polynomial interpolation, although accurate in

theory, is computationally prohibitive and unsuitable for

practical applications. Meanwhile, FFmpeg's minterpolate

stands out for its high-quality motion smoothing but at a

significant computational cost.

The experiments reveal that cubic Hermite spline

interpolation is an optimal middle ground for most

scenarios, delivering consistent results with reasonable

computational requirements. However, FFmpeg's

approach excels in scenarios demanding the highest visual

fidelity, particularly in professional video editing and

restoration. The findings underscore the importance of

selecting an interpolation method that aligns with the

https://drive.google.com/drive/u/1/folders/1Q7kclf3VfXBnVRT_ILUCcKdD3a1TLyaZ

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

desired trade-off between speed and quality, highlighting

the versatility and limitations of these techniques. Future

work could explore hybrid methods or advanced machine

learning models to improve computational efficiency while

maintaining high-quality outputs.

VII. ATTACHMENT

Link for github, explanation video, and google drive is

stored in this link : https://linktr.ee/Ryzz17

REFERENCES

[1] S. A. Dyer and J. S. Dyer, "Cubic-spline interpolation. 1," in IEEE

Instrumentation & Measurement Magazine, vol. 4, no. 1, pp. 44-46,

March 2001, doi: 10.1109/5289.911175.
[2] Cristian Constantin Lalescu, Two hierarchies of spline

interpolations. Practical algorithms for multivariate higher order
splines, doi: 10.48550/arXiv.0905.3564

[3] Munir, Rinaldi.”http://informatika.stei.itb.ac.id/~rinaldi.munir/

[4] Gibin Chacko George, et al, A Novel and Efficient Hardware

Accelerator Architecture for Signal Normalization, 25 September

2019, doi:10.1007/s00034-019-01262-3

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 27 Desember 2024

Mochammad Fariz Rifqi Rizqulloh 13523069

https://linktr.ee/Ryzz17

