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Abstract—Frame rate, commonly known as frames per 

second (FPS), plays a pivotal role in how audiences perceive 

videos and animations. Low FPS can result in a choppy, 

unnatural experience, while high FPS provides fluidity and a 

more immersive viewing. In this paper, we explore FPS 

modification through interpolation methods, comparing 

linear interpolation, cubic Hermite spline interpolation, 

polynomial interpolation, and FFmpeg's minterpolate filter. 

Each method brings distinct trade-offs between 

computational efficiency and visual quality. The extracted 

frames from the original video are interpolated using these 

techniques to generate intermediate frames, achieving the 

desired FPS. While linear interpolation is computationally 

efficient, it struggles with smooth transitions. Cubic Hermite 

splines balance efficiency and continuity, whereas polynomial 

interpolation offers theoretical accuracy but becomes 

impractical due to high computational demands. FFmpeg's 

minterpolate provides superior visual quality but is 

computationally expensive. This paper offers a 

comprehensive comparison of these methods in terms of 

speed and output quality, providing insights into their 

applicability across various scenarios in video processing. By 

addressing computational challenges and visual fidelity, this 

research contributes to advancing video frame rate 

modification methods. 

Keywords—Frame rate modification, interpolation, video 

processing, frame synthesis, computational efficiency 

 

I.   INTRODUCTION 

Frame per second, or FPS, is the rate at which 

consecutive images, called frames, appear on a screen. This 

simple number can make a video feel smooth and natural 

or jagged and uncomfortable. Imagine watching a movie or 

playing a game where motion stutters—it pulls you out of 

the experience, doesn’t it? That’s what happens with low 

FPS. High FPS, on the other hand, creates fluidity, 

especially in fast-moving scenes. But there’s a balance to 

strike. Too low, and the experience is choppy. Too high, 

and you’re pushing hardware limits for little gain. 

Adjusting FPS, known as FPS modification, becomes 

essential in ensuring a seamless viewing experience across 

different platforms and devices. Whether it’s adapting a 

cinematic 24 FPS film for a 60 FPS display or breathing 

life into old, jerky footage, the goal remains consistent: 

smooth transitions that feel natural. In fields like gaming, 

sports broadcasting, and video streaming, this adjustment 

is more than a technical task—it shapes how audiences 

connect with visual content. 

This project explores ways to tackle FPS modification. 

Specifically, it compares four methods: linear 

interpolation, polynomial interpolation, cubic spline 

interpolation. Each brings a unique approach while 

maintaining usage of same concept, Interpolation. Linear 

interpolation is fast and straightforward but can leave 

motion looking unnatural. Cubic spline enhances 

continuity across frames. These techniques are not just 

tools; they offer choices that balance speed, quality, and 

computational needs. For FPS modification on 

professional fields, like movie production, they use 

advanced methods like optical flow, or using other library, 

like FFmpeg, or with the help of AI (Artificial Inteligence). 

That might provide superior quality but those are 

computationally expensive. 

Why does this matter? Videos today need to work 

seamlessly across devices, whether they’re old movies 

restored for modern screens or fast-paced games with 

intricate graphics. Choosing the right technique for FPS 

modification affects how well the final product works for 

its audience. This project evaluates these methods to offer 

insights into their effectiveness and trade-offs, providing 

guidance for making informed decisions. 

In this paper, we’ll first set the stage by looking at 

existing work and techniques for FPS modification. Then, 

we’ll describe how each of the four methods is 

implemented and analyzed. Finally, results will show how 

these techniques perform in practice, and we’ll draw 

conclusions about their suitability for different types of 

content. Every frame matters, and this project digs into 

how to make them count. 

. 

 

II.  FUNDAMENTAL THEOREM 

A. Interpolation 

Interpolation is a mathematical technique used to 

estimate the value of a function at a point within the range 

of a discrete set of known data points. Simply put, given a 

set of known point : (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … , (𝑥𝑛 , 𝑦𝑛), 
interpolation constructs a continuous function 𝑓(𝑥) that 

passes through these points. 

For example, given these points : (0,2), (1,4), (2,0), 
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(3,4). The interpolation result may vary (there may exist 

more than 1 equation that satisfy the condition), for 

example one of the equation that satisfy the condition is 

𝑓(𝑥) =  2 − 5𝑥 + 6𝑥2 − 𝑥3. This equation indeed satisfy 

the condition, as 𝑓(0) = 2, 𝑓(1) = 4, 𝑓(2) = 0, 𝑓(3) = 4. 

 

B. Linear Interpolation 

Linear interpolation is one of the simplest methods used 

to estimate unknown values between two known data 

points. Linear interpolation is a method of curve fitting 

using linear polynomials to construct new data points 

within the range of a discrete set of known data points. 

Suppose known data points is (𝑥1, 𝑦1) and (𝑥2, 𝑦2), then 

equation is 𝑓(𝑥) = 𝑦1 + (
𝑥−𝑥1

𝑥2−𝑥1
)(𝑦2 − 𝑦1) 

Suppose we have coordinate of points : 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛) such that 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛. 

Then the result of interpolation is a piece-wise function for 

each interval between two consecutive points. This is 

example of interpolation using linear interpolation on 

points (−1,10), (0,3), (1,0), (2,5), (3,7), (4,7). 
 

 
Fig 2.1 : Result of linear interpolation 

Source : writer’s archive 

 

This algorithm provides very simple and very efficient 

approach to interpolating unknown values, as its does not 

need any complex processing. However, its come with a 

price : the result of linear interpolation may not accurate 

for complex data. 

 

C. Cubic Hermite Spline Interpolation 

Cubic hermite spline interpolation is a method used to 

estimate unknown values between two known points by 

fitting a cubic polynomial to the data. Unlike linear 

interpolation, which connects data points with straight 

lines, cubic hermite spline interpolation uses polynomials 

of degree three, allowing for smoother and more accurate 

approximations, especially when dealing with nonlinear 

data. Suppose known data points is (𝑥0, 𝑓(𝑥0)), 
(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)), …, (𝑥𝑛 , 𝑓(𝑥𝑛)), where 𝑥0 < 𝑥1 <
 𝑥2 < ⋯ < 𝑥𝑛. To evaluate data in arbitrary 𝑥, we will use 

information from 4 known data points (𝑖, 𝑗, 𝑘, 𝑙), where 

𝑥𝑖 ≤ 𝑥𝑗 < 𝑥 < 𝑥𝑘 ≤ 𝑥𝑙 . In other words, point 𝑗 is nearest 

point from left, point 𝑖 is next nearest point from right point 

𝑘 is nearest point from right, and point 𝑙 is next nearest 

point from right. After interpolation, we will be able to 

evaluate any points in interval [𝑥𝑗 , 𝑥𝑘]. 𝑖-th point and 𝑙-th 

points is take into consideration, because the idea of cubic 

hermite spline interpolation is we want to take into 

consideration of the slope at 𝑥𝑗 and slope at 𝑥𝑘.  

Consider coordinate of points (𝑛 − 1, 𝑓(𝑛 − 1)),
(𝑛, 𝑓(𝑛)), (𝑛 + 1, 𝑓(𝑛 + 1)), (𝑛 + 2, 𝑓(𝑛 + 2)), where 𝑛 

is an integer. In addition, assume that the tangents at the 

endpoints are defined as the centered differences of the 

adjacent points, that its: 

𝑚𝑛 =
𝑓(𝑛 − 1) + 𝑓(𝑛 + 1)

2
 

𝑚𝑛+1 =
𝑓(𝑛) + 𝑓(𝑛 + 2)

2
 

To evaluate the interpolated 𝑓(𝑥) for a real 𝑥, first 

separate x into the integer portion n and fractional 

portion u: 

𝑥 = 𝑛 + 𝑢 

𝑛 = ⌊𝑥⌋ 
𝑢 = 𝑥 − 𝑛 = 𝑥 − ⌊𝑥⌋ 

0 ≤ 𝑢 < 1 

Then the Catmull-Rom spline is :  

 
 

In this case, for that interval [𝑛, 𝑛 + 1], the cubic 

polynomial formed is 𝑓(𝑥) = 

𝑓(𝑛) × 𝑢0 +

(−0.5𝑓(𝑛 − 1) + 0.5𝑓(𝑛 + 1)) × 𝑢1 + 

(𝑓(𝑛 − 1) − 2.5𝑓(𝑛) + 2𝑓(𝑛 + 1) − 0.5𝑓(𝑛 + 2)) × 𝑢2 +

(−0.5𝑓(𝑛 − 1) + 1.5𝑓(𝑛) − 1.5𝑓(𝑛 + 1) + 0.5𝑓(𝑛 + 2)) × 𝑢3

 

 

Substitute 𝑢 = (𝑥 − 𝑛), we get 𝑓(𝑥) = 

𝑓(𝑛) × (𝑥 − 𝑛)0 +

(−0.5𝑓(𝑛 − 1) + 0.5𝑓(𝑛 + 1)) × (𝑥 − 𝑛)1 + 

(𝑓(𝑛 − 1) − 2.5𝑓(𝑛) + 2𝑓(𝑛 + 1) − 0.5𝑓(𝑛 + 2)) × (𝑥 − 𝑛)2 +

(−0.5𝑓(𝑛 − 1) + 1.5𝑓(𝑛) − 1.5𝑓(𝑛 + 1) + 0.5𝑓(𝑛 + 2)) × (𝑥 − 𝑛)3

 

 

For example, if I have coordinates of points : (−1,10),
(0,3), (1,0), (2,5), (3,7), (4,7). Then the result of  the  
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interpolation is :  

 

 
Fig 2.2 : Result of cubic hermite spline interpolation 

Source : writer’s archive 

 

In that example, piece-wise equation formed is  
 

𝑃(𝑥)

=  

{
 
 

 
 
10 − 3.5(𝑥 + 1) − 9.0(𝑥 + 1)2 + 5.5(𝑥 + 1)3, −1 ≤ 𝑥 ≤ 0

 3 − 5𝑥 + 0𝑥2 + 2𝑥3, 0 < 𝑥 ≤ 1

(𝑥 − 1) + 9.5(𝑥 − 1)2 − 5.5(𝑥 − 1)3, 1 < 𝑥 ≤ 2

5 + 3.5(𝑥 − 2) − 2.0(𝑥 − 2)2 + 0.5(𝑥 − 2)3, 2 < 𝑥 ≤ 3

7 + 1.0(𝑥 − 3) − 2.0(𝑥 − 3)2 + 1.0(𝑥 − 3)3, 3 < 𝑥 ≤ 4

 

 

D. Cubic Spline Interpolation 

Cubic spline interpolation and cubic hermite spline 

interpolation has very similar main idea and approach to 

interpolation. Both approaches using piece-wise third order 

polynomial, both take consideration on polynomial 

continuity, and both also take consideration on the 

polynomial slope. However, cubic hermite spline 

interpolation is done under one assumption the slope of a 

points is average of its two adjacent points : 

𝑚𝑛 =
𝑓(𝑛 − 1) + 𝑓(𝑛 + 1)

2
 

That assumption make the calculations and interpolation’s 

process much simpler. Meanwhile, the natural cubic spline 

interpolation work with no assumption, but it has one more 

consederation, the second derivative. 

Consider a set of points (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)),

… , (𝑥𝑛 , 𝑓(𝑥𝑛)) , where 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛. Let 𝑃𝑖  is the 

piece wise function of 𝑓(𝑥) for interval [𝑥𝑖 , 𝑥𝑖+1]. Then for 

all 𝑖 where 0 ≤ 𝑖 < 𝑛 must follow these conditions : 

𝑃𝑖(𝑥𝑖) = 𝑓(𝑥𝑖) . . . (1) 

𝑃𝑖(𝑥𝑖+1) = 𝑃𝑖+1(𝑥𝑖+1) . . . (2) 

𝑃𝑖
′(𝑥𝑖+1) = 𝑃𝑖+1

′ (𝑥𝑖+1) . . . (3) 

𝑃𝑖
′′(𝑥𝑖+1) = 𝑃𝑖+1

′′ (𝑥𝑖+1) . . . (4) 

Since 𝑃𝑖(𝑥) is a cubic polynomial, then 𝑃𝑖
′′(𝑥) is a linear 

polynomial. Let that value of 𝑃𝑖
′′(𝑥𝑖) = 𝜅𝑖. Since 𝑃𝑖

′′(𝑥) is 

a linear polynomial, we can easily found the value of 

𝑃𝑖
′′(𝑥) where 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1. 

𝑃𝑖
′′(𝑥) = 𝜅𝑖

𝑥𝑖+1 − 𝑥

𝑥𝑖+1 − 𝑥𝑖
+ 𝜅𝑖+1

𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

 . . . (5) 

Integrating (1), we will get the value of 𝑃𝑖
′(𝑥). 

𝑃𝑖
′(𝑥) =  −

𝜅𝑖
2

(𝑥𝑖+1 − 𝑥)
2

𝑥𝑖+1 − 𝑥𝑖
+
𝜅𝑖+1
2

(𝑥 − 𝑥𝑖)
2

𝑥𝑖+1 − 𝑥𝑖
+ 𝛼𝑖 … (6) 

Integrating (2), we will get value of 𝑃(𝑥). 

𝑃𝑖(𝑥) = 

 −
𝜅𝑖
6

(𝑥𝑖+1 − 𝑥)
3

𝑥𝑖+1 − 𝑥𝑖
+
𝜅𝑖+1
6

(𝑥 − 𝑥𝑖)
3

𝑥𝑖+1 − 𝑥𝑖
+ 𝛼𝑖𝑥 + 𝛽𝑖 … (7) 

We can use this information into our initial condition 

(1), (2), (3), and (4). In the end, we will get this equation :  

𝜅𝑖(𝑥𝑖+1 − 𝑥𝑖) + 2𝜅𝑖+1(𝑥𝑖+2 − 𝑥𝑖) + 𝜅𝑖+2(𝑥𝑖+2 − 𝑥𝑖+1) 

= 6 [
𝑓(𝑥𝑖+2) − 𝑓(𝑥𝑖+1)

𝑥𝑖+2 − 𝑥𝑖+1
−
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖
] 

Where 𝑖 = 0, 1, 2, . . , 𝑁 − 2 

We finally get 𝑁 − 1 linear equations with 𝑁 +
1 unknowns : 𝜅𝑖, where  0 ≤ 𝑖 ≤ 𝑁. We can use any 

system of linear solver, such as Gaussian Elimnation to get 

the value of the unknowns. After we find the value of 

unknown variables, 𝜅𝑖 where, 0 ≤ 𝑖 ≤ 𝑁 we finally get the 

piece-wise function 𝑃𝑖(𝑥), as the coefficient of 𝑃𝑖(𝑥) 
dependant only on value of 𝜅𝑖 and 𝜅𝑖+1.  However, as the n 

number of unknown variables is higher than the number of 

equation, the result of linear system of linear equation 

might be a parametric variables. Some way to address this 

is using some assumptions. Those assumptions including, 

but not limited to : 

• Make the curvature zero at the endpoints 𝑥0 and 𝑥𝑛. 

That is, make 𝜅0 = 𝜅𝑛 = 0. This assumption is 

equivalent to assuming that 𝑃0(𝑥) and 𝑃𝑁−1(𝑥) 
approach linearity at their outer extremities.  

• Make the slope of 𝑓(𝑥) have a specified value at 

either of the boundaries. 

• Make 𝜅0 = 𝜅1, and 𝜅𝑛−1 = 𝜅𝑛. This assumption is 
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equivalent to assuming that 𝑃0(𝑥) and 𝑃𝑁−1(𝑥) 
approach parabola at their outer extremities 

 
Fig 2.3. Comparison between natural cubic and hermite interpolation. 

Source : [4] 

 

E. Polynomial Interpolation 

Polynomial interpolation is a method used to estimate 

values between known data points by fitting a polynomial 

that passes through these points. Given a set of data points, 

the goal is to find a single polynomial of the lowest 

possible degree that exactly matches each point. On of the 

key difference between cubic-spline Interpolation, is that 

for polynomial interpolation, the result is one continuous 

polynomial, whereas cubic-spline interpolation is 

continous piece-wise function. In general, given 𝑛 + 1  
points, (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥𝑛 , 𝑦𝑛), the 

interpolation result will be a polynom with degree of 𝑛. 

𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 +⋯+ 𝑐𝑛𝑥
𝑛. The 

interpolation result, 𝑓(𝑥), should satisfy these condition : 

• 𝑓(𝑥0) = 𝑦0 

𝑐0 + 𝑐1𝑥0 + 𝑐2𝑥0
2 + 𝑐3𝑥0

3 +⋯+ 𝑐𝑛𝑥0
𝑛 = 𝑦0 

• 𝑓(𝑥1) = 𝑦1 

𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥1
2 + 𝑐3𝑥1

3 +⋯+ 𝑐𝑛𝑥1
𝑛 = 𝑦1 

• 𝑓(𝑥2) = 𝑦2 

𝑐0 + 𝑐1𝑥2 + 𝑐2𝑥2
2 + 𝑐3𝑥2

3 +⋯+ 𝑐𝑛𝑥2
𝑛 = 𝑦2 

• … 

• 𝑓(𝑥𝑛+1) = 𝑦𝑛+1 

𝑐0 + 𝑐1𝑥𝑛+1 + 𝑐2𝑥𝑛+1
2 +⋯+ 𝑐𝑛𝑥𝑛+1

𝑛 = 𝑦𝑛+1 

Now, we need to find 𝑐𝑖 , 0 ≤ 𝑖 ≤ 𝑛 that satisfy all of the 

equation above. This problem breakdown into this 

following : “given 𝑛 + 1 linear equation, find 𝑛 + 1 

unknown variables”. As you can see, this quickly become 

a trivial system of linear equation problem. There is a lot 

of method to solve system of linear equation problem, one 

of which is using Gauss Elimination Method. As we solve 

all the coefficient, we finally can evaluate value of 𝑓(𝑥) at 

any points.  

 

F. System of Linear Equation 

A system of linear equations consists of multiple linear 

equations involving the same set of variables. For example, 

a system with 𝑛 equations and 𝑘 unknowns can be written 

in general form as: 

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑘𝑥𝑘 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑘𝑥𝑘 = 𝑏2 

… 

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑘𝑥𝑘 = 𝑏𝑛 

This system of linear equations can also be written as 

matrix notation:  

𝐴𝑥 = 𝑏 

Where 𝐴 is the coefficient matrix, 𝑥 is vector of unknowns 

variable, and b is vector of constant. Solving a system of 

linear equations can be done by various ways, including 

Gaussian Elimination, LU Decomposition, Gauss-Jordan 

Elimination, Jacobi Method, Gauss-Seidel Method and 

others. 

 

III.   PROBLEM ANALYSIS  

Video is a series of frames, and frames is matrix of RGB 

values. In this paper, we let that 𝑃𝑖𝑛𝑖𝑡(𝑖, 𝑥, 𝑦) is value stored 

in RGB values of 𝑖-th frames of original video, at position 

(𝑥, 𝑦). Similarly, we let that 𝑃𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑥, 𝑦) is value stored 

in RGB values of 𝑖-th frames of modified video, at position 

(𝑥, 𝑦). To modify the FPS, we need to generate a new set 

of pixel values for each frame of the modified video. The 

number of frames in the modified video may differ, and we 

must compute the values for intermediate frames.  

To modify the FPS of a video, we treat each pixel's 

position (𝑥, 𝑦) independently. This means that the pixel 

values over time at a specific location (𝑥, 𝑦) in all frames 

form a series of data points that we can process separately 

from other pixel locations. For a given pixel position 

(𝑥, 𝑦), the data points are the RGB values of that pixel 

across all frames in the original video. Denoting the 

original number of frames as 𝑁, the set of points we will 

interpolate is : 

[
 
 
 
 
(1, 𝑃𝑖𝑛𝑖𝑡(1, 𝑥, 𝑦)),

(2, 𝑃𝑖𝑛𝑖𝑡(2, 𝑥, 𝑦)),
… 

(𝑁, 𝑃𝑖𝑛𝑖𝑡(𝑁, 𝑥, 𝑦))]
 
 
 
 

. 

Using an interpolation method (e.g., linear, cubic hermite 

spline, or polynomial), we construct a continuous 

function 𝐹𝑥,𝑦(𝑡), where 𝑡 is a real value for any 𝑡 ∈ [1, 𝑁]. 

Using 𝐹𝑥,𝑦(𝑡), we can construct 𝑃𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑥, 𝑦), for all 1 ≤

𝑖 ≤ 𝑁′, where 𝑁′ is number of frames in modified video. 

To get consistent result, we can evalue in this following 

way : 

• Let 𝛼 =
𝑁−1

𝑁′−1
 

• 𝑃𝑓𝑖𝑛𝑎𝑙(1, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1) 

• 𝑃𝑓𝑖𝑛𝑎𝑙(2, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1 + 𝛼)   

• 𝑃𝑓𝑖𝑛𝑎𝑙(3, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1 + 2𝛼)   

•  … 

• 𝑃𝑓𝑖𝑛𝑎𝑙(𝑁′, 𝑥, 𝑦) = 𝐹𝑥,𝑦(1 + (𝑁
′ − 1)𝛼) 

Using above method of evaluating make sure the difference 

between each frame is consistent, make the possible best 

result among all scenario. 
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Fig 3.1. Visualization of the process. 

Source : writer’s archive 

 

Interpolation is done 𝑊 ×𝐻 times, where one for each 

pixel position. After all pixel is interpolated and the value 

is evaluated, we can turn all the frame back into video 

again. Below is experiment done on video with 4 frames, 

changed to video with 7 frames. 

 
Fig 3.2. Result of FPS modification from 4 frame to 7 frame. Both of the 

video has the same duration, but different number of frames. 

Source : writer’s archive 

 

Polynomial interpolation requires special handling due 

to its computational challenges. As explained earlier, we 

will treat each pixel position (𝑥, 𝑦), where 1 ≤ 𝑥 ≤ 𝑊 and 

1 ≤ 𝑦 ≤ 𝐻 independently. Because of that, for each pixel 

position, the number of data points processed for 

interpolation will be equal to the number of frames in the 

video. As the duration or FPS of the original video 

increases, the total number of frames also grows 

significantly. This becomes a problem because, in 

polynomial interpolation, the degree of the polynomial is 

equal to the number of frames minus one. For example, if 

we have a 15-second video with an FPS of 24, the degree 

of the polynomial would be: 

𝑛 = (15 × 24) − 1 = 359 

Such a high degree creates serious challenges for 

computational speed and memory. The coefficients of the 

system of linear equations used to compute the polynomial 

grow extremely large, leading to inefficiencies. 

To address this issue, I chose to split the video into 

smaller chunks, each consisting of 25 frames. This 

approach ensures that the interpolation remains accurate 

while significantly reducing the computational load and 

memory requirements. By limiting the degree of the 

polynomial within each chunk, the process becomes 

manageable and avoids excessive computation time. 

 

 

IV.   IMPLEMENTATION 

In implementing FPS modification, we utilized two 

primary libraries: NumPy and OpenCV. OpenCV was used 

to handle the video processing tasks, specifically for 

extracting frames from the input video. By reading the 

video file frame by frame, OpenCV allowed us to 

efficiently access the raw pixel data of each frame. 

The extracted frames were stored in a Python list, with 

each frame represented as a 3D NumPy array of shape 
(ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 3), where the three channels correspond 

to the RGB values of each pixel. This structure ensured that 

the frames were organized sequentially, enabling 

straightforward manipulation and interpolation of pixel 

values. The list as a whole had a shape of 
(𝑓𝑟𝑎𝑚𝑒𝑠, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 3), representing the entire video 

as a collection of RGB matrices. 

Once the interpolation process was applied, the resulting 

interpolated frames were computed and appended to a new 

list, representing the modified video. Each interpolated 

frame maintained the same dimensions and RGB structure 

as the original frames, ensuring consistency. The final list 

of frames for the modified video was then saved back as a 

new video file using OpenCV, completing the FPS 

modification process.  

 
Fig 4.1. Converting video into list of frames 

Source : writer’s archive 

 

 
Fig 4.2. Interpolation process 
Source : writer’s archive 



Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 

 

 
Fig 4.3. Converting list of frames into video 

Source : writer’s archive 

 

V.   RESULT ANALYSIS 

The speed comparison highlights the computational 

efficiency and result quality of different FPS modification 

methods for videos of varying resolutions and frame 

counts. Aside of the linear interpolation, cubic hermite 

spline interpolation, and polynomial interpolation, one 

more method is added into the comparison. Industrial grade 

FPS modification library, FFmpeg, is used to measure how 

efficient is this algorithm. Test is conducted with two kinds 

of video, simple video, and complex video. The result is 

shown in the following : 

Simple video, consist of 48 frames, resolution is 

40 × 100. FPS of the video is modified to 5 times fold, 

from 12 to 60,. The final video consist of 240 frames: 

1. Linear Interpolation : 0.06 seconds 

2. Cubic hermite spline interpolation : 0.07 seconds 

3. FFmpeg’s minterpolate : 0.5 seconds 

4. Polynomial Interpolation : 6s 

Complex video, consist of 178 frames, resolution is 

720 × 1280. FPS of the video is modified to 2.5 times 

fold, from 12 to 30. The final video consist of 445 frames: 

1. Linear Interpolation : 22.34 seconds 

2. Cubic hermite spline interpolation : 24.11 seconds 

3. FFmpeg’s minterpolate : approximately 70 seconds 

4. Polynomial Interpolation : More than 300 seconds, 

the computation is terminated mid-way due to 

excessive computational demands 

This comparison show how efficient linear interpolation 

and cubic hermite spline interpolation, while at the same 

time show how inefficient polynomial interpolation is. As 

for FFmpeg, eventough it is significantly slower than two 

other interpolation method, FFmpeg’s mininterpolate 

provides very high-quality motion smoothing. 

For the result comparison, the result of linear 

interpolation and cubic hermite spline interpolation far too 

similar. So for this comparison, only show comparison 

between original video, cubic hermite spline interpolation, 

and FFmpeg’s mininterpolate. When comparing the results 

of FPS modification using FFmpeg's minterpolate filter 

and cubic hermite spline interpolation, both methods 

effectively achieved the desired change in FPS, but with 

noticeable differences in visual output. The FFmpeg 

approach produced a smoother video overall, but some 

frames appeared deformed, likely due to motion estimation 

inaccuracies during interpolation. On the other hand, the 

bicubic hermite spline interpolation method maintained the 

structural integrity of all frames, with no visible 

deformation. However, the resulting video exhibited minor 

changes to the human eye, with a slight shadow or blur 

effect, particularly in areas with rapid motion. This 

suggests that while FFmpeg prioritizes smooth transitions, 

it may compromise frame quality in some cases, whereas 

bicubic hermite spline interpolation focuses on 

maintaining frame integrity, sometimes at the cost of a 

perfectly smooth experience. Below is some of the 

comparison. For the full comparison, you may access on 

this link : Full Comparison 

 

 
Fig 5.1. Example of comparison for complex colored video 

Source : writer’s archive 

 

 
Fig 5.2. Example of comparison for simple colored video 

Source : writer's archive 

 

As shown in the figure above, the cubic hermite spline 

interpolation method works by "squeezing" additional 

frames between the original frames. As a result, the 

interpolated frames appear as a blend or merge of the 

previous and next frames, creating a smooth transition 

effect. However, in human eyes, the result of cubic hermite 

spline interpolation may appear worse. 

 

VI.  CONCLUSION  

This research demonstrates how interpolation 

techniques can effectively modify a video's FPS, with each 

method offering unique benefits and limitations. Linear 

interpolation is the fastest approach but lacks smooth 

transitions, making it suitable for simple applications. 

Cubic Hermite spline interpolation provides a balance 

between computational efficiency and quality, producing 

smooth transitions without significant deformation in 

frames. Polynomial interpolation, although accurate in 

theory, is computationally prohibitive and unsuitable for 

practical applications. Meanwhile, FFmpeg's minterpolate 

stands out for its high-quality motion smoothing but at a 

significant computational cost. 

The experiments reveal that cubic Hermite spline 

interpolation is an optimal middle ground for most 

scenarios, delivering consistent results with reasonable 

computational requirements. However, FFmpeg's 

approach excels in scenarios demanding the highest visual 

fidelity, particularly in professional video editing and 

restoration. The findings underscore the importance of 

selecting an interpolation method that aligns with the 

https://drive.google.com/drive/u/1/folders/1Q7kclf3VfXBnVRT_ILUCcKdD3a1TLyaZ
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desired trade-off between speed and quality, highlighting 

the versatility and limitations of these techniques. Future 

work could explore hybrid methods or advanced machine 

learning models to improve computational efficiency while 

maintaining high-quality outputs. 

 

VII.  ATTACHMENT 

Link for github, explanation video, and google drive is 

stored in this link : https://linktr.ee/Ryzz17  
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